

Master Beef Producer

U1|Extension
Tennessee Beef Cattle Improvement Initiative

Forage Production for CowCalf Operations

Basic Steps to I mprove Pastures

- Fertilize by soil test

Effect of fertility on composition of unimproved pasture

Forages. 1995. Iowa St Press

Pounds of nutrients removed by crops

	tall fescue 3.5 ton	bermuda 8 ton
nitrogen	135	368
phosphate	65	96
potash	185	400

Ball and co-workers. 1996. Southern Forages.

Basic Steps to I mprove Pastures

- Fertilize by soil test
- Control weeds

Timing Effect on Buttercup control

1997, Blount County- buttercup control

	rate	Mar 17	Apr 25
2,4-D ester	2 pt	99	70
2,4-D ester	4 pt	99	85

Basic Steps to I mprove Pastures

- Fertilize by soil test
- Control weeds
- Use clovers

Benefits of legumes

- Improved quality
- Decreased need for nitrogen
- Possibly lengthen grazing season

Cumulative yield of tall fescue/ clover mixtures

Fribourg, H. A. 1978. Tennessee Farm and Home Science. 107:16-17.

How to plant legumes

When - Feb 15 to April 1
What - 2 lb white clover 4 lb red clover
8 lb annual lespedeza (hillsides)
How - before March 1broadcast after March 1 drill

Basic Steps to I mprove Pastures

- Fertilize by soil test
- Control weeds
- Use clovers
- Stockpile tall fescue in fall

Quality of Stockpiled Tall Fescue

Ross and Reynolds, 1979

Steps to stockpiling

1. Clip pastures in late August.
2. Fertilize with 180 lb ammonium nitrate after good rain.
3. Keep animals off until after frost.

Basic Steps to I mprove Pastures

- Fertilize by soil test
- Control weeds
- Use clovers
- Stockpile tall fescue in fall
- Store hay under cover

Hay loss with various storage methods

storage method percent loss

barn

6
hay tarp
12
uncovered, on ground 35

Managing pastures to improve yield and utilization

- Incorporate basic practices
- Manage for yield and quality

As forage matures, quality decreases

- lower protein, energy
- more fiber

But yield increases

Tall fescue protein content as plants mature

Bates. 2000. Unpublished data. Plateau Experiment Station.

Quality versus Yield

Plant growth rate at various stages of growth

Phase 2

-high leaf area, light interception
-young, efficient leaves
-High photosynthetic rate

- fast growth rate

Phase 1

-low leaf area, light interception -reduced photosynthetic rate

- new growth comes from energy
stored in roots and crown
-slow regrowth after grazing

Phase 3
-high leaf area, light interception -old inefficient leaves
-seedhead or bloom production
-lower photosynthetic rate
-energy used to produce seed
-slow growth rate

overgrazing

undergrazing

Growth season of tall fescue

Controlled Grazing

- Many terms mean same thing
- rotational grazing
- rotational stocking
- managed intensive grazing
- intensive stocking
- intensive grazing

Controlled Grazing means ...

MANAGING THE FORAGE CURVE

Benefits of controlled grazing

- Improved yield of quality forage
- Improved persistence of forages
- Easier to harvest hay from excess forage
- Improved beef production per acre
- Calmer animals
- Start to notice pastures

Effect of controlled grazing on animal performance

tall fescue/bermudagrass pastures - GA

trait	continuous	controlled
stocking rate (acres/pair)	2.0	1.5
cow pregnancy rate (\%)	93	95
calf weaning weight (lb)	490	486
lb calf produced/acre	243	334

Hoveland. 1995. Rotational vs continuous grazing. Proceedings of The Annual
Conference of the Tennessee Forage and Grassland Council.

UT

Getting started

- Fences
- Permanent boundary fences
- Electric, temporary interior fences
- Water
- Access to water from each paddock

Fences placed based on ...

- Water
- Topography
- Soil type
- Forage species
- other

Paddock size and number

- How often you want to move
- At least every 5-7 days
- Number and size of animals
- Season

Paddock size

Acres	Avg wt of animals	Dry forage consumed (\% of BW) X	\# of animals	X	days on pasture
required per					
paddock	Dry matter available	X	\% of forage that will be utilized		
Dry forage consumed - usually between 2-3 \% of BW					
Dry matter available -	alfalfa	225 pounds/inch			
	orchardgrass	180 pounds/inch			
	wheat	150 pounds/inch			
	tall fescue	210 pounds/inch			
	bermudagrass	300 pounds/inch			
Percent of forage utilized - range between 30 and 70 percent					

Example

You have thirty 600 pound steers that you want to graze on a tall fescue pasture that is 12 inches tall. You would like to set paddock size so that they will be moved about every 4 days. How big should each paddock be?
$\begin{aligned} & \text { Acres } \\ & \text { required per } \\ & \text { paddock }\end{aligned}=\frac{600 \times 0.03 \times 30 \times 4}{(12 \times 210) \times 0.60}=\frac{2160}{1512}$
1.4 acres per paddock

Adding a new forage to program

- Goal is to produce forage at near constant rate all year
- Not possible with one forage species

Ky 31 infected tall fescue

- easy to grow
- minimal requirements

Tall fescue is common because

$>$ Easy to establish
> Persistent

$>$ Long growing season
> Stockpiling

Tall fescue

Problem: Poor summer production

Warm-season forage production

Warm-season forage production

Select the proper species

Annual
sudex pearl millet crabgrass

Perennial

bermudagrass
native grasses

Annuals vs Perennial


```
Annuals
not long term expensive establishment risk
```


Perennials

longer commitment less expensive

Warm-season forage production

Yield of Coastal Bermudagrass

Prince and Burton. Agronomy J. 1956. v. 48 p. 296

Warm-season forage production

4. Manage correctly

- Soil fertility
- Harvest timing
- Potential toxicities

Pounds of nutrients removed by crops

	tall fescue 3.5 ton	bermuda 8 ton
nitrogen	135	368
phosphate	65	96
potash	185	400

Ball and co-workers. 1996. Southern Forages.

UT Forage Testing Laboratory crude protein of samples from 2000

Toxicities in Summer Grasses

Nitrates

- drought
- N fertilization
- grazing/hay
- stable in hay

Prussic acid

- sorghums
- frost/stress
- grazing
- not usually in hay

This Master Beef Producer Program is being partially funded by a grant from the Tennessee Department of Agriculture's Development Fund. Proceeds from this fund are derived solely from the sale of the Tennessee "Ag Tag" specialty license plate.

